Automata and Logic on Trees
Some XML-related Applications

Wim Martens1 Stijn Vansummeren2

1University of Dortmund, Germany
2Hasselt University, Belgium
Our story so far

- **Tree automata**
 deterministic, bottom-up, top-down, constructions, ...
 ranked and unranked

- **Decision problems for tree automata**
 Equivalence, universality, emptiness, intersection emptiness, ...

- **MSO on trees**
 equivalent to tree automata

Nice theory, what’s the killer application?
Our story so far

- **Tree automata**
 deterministic, bottom-up, top-down, constructions, ...
 ranked and unranked

- **Decision problems for tree automata**
 Equivalence, universality, emptiness, intersection emptiness, ...

- **MSO on trees**
 equivalent to tree automata

Nice theory, what’s the killer application?
XML is the lingua franca of data on the Web

Consider this:

```
<Scientist>
  <Name>Alan Turing</Name>
  <Bio>
    <Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
    <Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
  </Bio>
  <Article>
    <Title> Computability and lambda-Definability </Title>
    <Journal> J. Of Symbolic Logic </Journal>
    <Year> 1937 </Year>
    ...
  </Article>
  ...
</Scientist>
```
And the winner is: XML!

Now consider this:

Scientist

Name

Alan Turing

Bio

When

23-6-1912

Where

London

Died

When

7-6-1954

Where

Wilmslow

Article

Title

Computability . . .

Journal

Symbolic Logic

Year

1937
And the winner is: XML!

Now consider this:

- **Name**: Alan Turing
- **Born**: 23-6-1912, London
- **Died**: 7-6-1954, Wilmslow

Article
- **Title**: Computability...
- **Journal**: Symbolic Logic
- **Year**: 1937

A natural correspondence
- Trees reflect the hierarchical structure of XML
- The data model underlying XML is tree-based
Important kinds of XML processing

- **Validation**
 Check whether an XML document is of given type

- **Querying**
 Extract information from an XML document

- **Transformation**
 Construct a new XML document from a given one
Important kinds of XML processing

- **Validation → DTD, XML Schema**
 Check whether an XML document is of given type

- **Querying → XPath, XQuery**
 Extract information from an XML document

- **Transformation → XSLT, XDuce, CDuce**
 Construct a new XML document from a given one
Outline

1. Schemas and Validation
2. Querying
3. Transformation
Document Type Definitions (DTDs)

Example document

```xml
<Scientist>
  <Name>Alan Turing</Name>
  <Bio>
    <Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
    <Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
  </Bio>
  <Article>
    <Title> Computability and lambda-Definability </Title>
    <Journal> J. Of Symbolic Logic </Journal>
    <Year> 1937 </Year>
  </Article>
</Scientist>
```

Example DTD

```xml
<!DOCTYPE Scientist [ 
  <!ELEMENT Scientist (Name, Bio, Article*)> 
  <!ELEMENT Bio (Born, Died?)> 
  <!ELEMENT Born (When, Where)> 
  <!ELEMENT Died (When, Where)> 
  <!ELEMENT Article (Title, Journal, Year)> ]>
```
Validation algorithm:

- For each node: check that the children are ok w.r.t. parent’s rule
- But ignore data values (Alan Turing, 23-6-1912, ...)

Example DTD

```
<!DOCTYPE Scientist [
  <!ELEMENT Scientist (Name, Bio, Article*)>
  <!ELEMENT Bio (Born, Died?)>
  <!ELEMENT Born (When, Where)>
  <!ELEMENT Died (When, Where)>
  <!ELEMENT Article (Title, Journal, Year)>
]
```
Hmmm ... that looks familiar!

Example DTD

```xml
<!DOCTYPE Scientist [  
  <!ELEMENT Scientist (Name, Bio, Article*)>  
  <!ELEMENT Bio (Born, Died?)>  
  <!ELEMENT Born (When, Where)>  
  <!ELEMENT Died (When, Where)>  
  <!ELEMENT Article (Title, Journal, Year)> ]>
```

Corresponding Tree Automaton

- **Alphabet:** $A = \{\text{Scientist, Name, Bio, ... , When, Where}\}$
- **States:** $A = \{\text{Scientist, Name, Bio, ... , When, Where}\}$
- **Final:** $A = \{\text{Scientist}\}$
- **Transition:** $\text{Name, Bio, Article}^* \xrightarrow{\text{Scientist}} \text{Scientist}$
- ...
Fact

The XML standard requires all regular expressions occurring in a DTD to be deterministic.

Example

Intuitively, an expression is deterministic if it is always determined which expression symbol will match the next input symbol of an input string.

- Not deterministic: $a(bc + bb)$
- Deterministic: $ab(c + b)$

Not all regular expressions can be written as deterministic regular expressions [Brüggemann-Klein, Wood 1998]
Actually . . .

Fact

Deterministic regular expressions can be translated into deterministic string automata in linear time

Immediate corollary

- Every DTD can be translated into an equivalent stepwise deterministic unranked tree automaton in linear time
- Such an automaton gives a validation algorithm!
- Moreover, since containment of deterministic TA is in \textit{ptime}, we can also check that every XML document valid w.r.t a DTD D_1 is also valid w.r.t. a DTD D_2 (useful in schema evolution, data exchange, . . .).
Expressive power?

Can DTDs specify all regular tree languages?

(a) No, because they can be translated in dop-down deterministic unranked tree automata

(b) No, because they cannot define the boolean circuits that evaluate to true

(c) No, because the labels are the same as the states

(d) Yes, but you have to extend them a little
Observation: There is only one rule for every label in a DTD D.

Hence if $a \in D$ and $a \in D$ then $a \in D$.

We can use this to show that a tree language is not expressible as a DTD.
DTD’s are quite limited

Example: there is no DTD recognizing only

```
<!DOCTYPE Dealer [
  <!ELEMENT Dealer (UsedCars, NewCars)>
  <!ELEMENT UsedCars (ad*)>
  <!ELEMENT NewCars (ad*)>
  <!ELEMENT ad ((model, year) + model)>
]
```

Obviously incorrect:
XML Schema to the rescue

Example: there is an XML Schema recognizing only

- Dealer
 - UsedCars
 - ad
 - model
 - year
 - ad
 - model
 - year
 - NewCars
 - ad
 - model
 - ... ad
 - model

XML Schema (using abstract syntax):

- Dealer \mapsto (UsedCars, NewCars)
- UsedCars \mapsto (ad1*)
- NewCars \mapsto (ad2*)
- ad1 \mapsto (model, year)
- ad2 \mapsto (model)
Corresponding Tree Automaton

- Alphabet(A) = {Dealer, UsedCars, Newcars, ad, model, year}
- States(A) = {Dealer, UsedCars, Newcars, ad₁, ad₂, model, year}
- UsedCars, NewCars $\xrightarrow{\text{Dealer}}$ Dealer
- $\text{ad}_1^* \xrightarrow{\text{UsedCars}}$ UsedCars
- model, year $\xrightarrow{\text{ad}}$ ad₁
- model $\xrightarrow{\text{ad}}$ ad₂
- ...

XML Schema (using abstract syntax):

```
Dealer $\mapsto$ (UsedCars, NewCars)
UsedCars $\mapsto$ (ad₁*)
NewCars $\mapsto$ (ad₂*)
ad₁ $\mapsto$ (model, year)
ad₂ $\mapsto$ (model)
```
Actually . . .

Fact

- The XML Schema standard forbids rules like

 \[\text{FunkyCars} \rightarrow (\text{ad}^1\ast, \text{sec}, \text{ad}^2\ast)\]

 in which the same label occurs with two different types

- When ignoring types, the regular expressions must again be deterministic
And again things transfer nicely

Facts:

- Every XML Schema can be translated into an equivalent **deterministic** unranked tree automaton in **linear time**

- Such an automaton gives a validation **algorithm**!

- Moreover, since containment of deterministic TA is in **ptime**, we can also check that every XML document valid w.r.t an XML Schema D_1 is also valid w.r.t. an XML Schema D_2 (useful in schema evolution, data exchange, . . .).

- Moreover, we can minimize XML Schema’s in **ptime**
Expressive power?

Can XML Schema’s specify all regular tree languages?

(a) No, because they can be translated in dop-down deterministic unranked tree automata

(b) No, because they cannot define the boolean circuits that evaluate to true

(c) Yes, but you have to extend them a little
Observation: Since rules like

$$\text{FunkyCars } \mapsto (ad^1, \text{sec}, ad^2)$$

are forbidden, the “type” of a node is determined by the string of labels encountered on the path from the root to that node.

Hence if \(a \in S\) and \(b \in S\) then \(a \in S\) then \(a \in S\).

We can use this to show that a tree language is not definable in XML Schema.
Exercise: Show that boolean circuit evaluation is hence not definable by an XML Schema
Exercise: Show that boolean circuit evaluation is hence not definable by an XML Schema

Fact

By allowing rules like

\[\text{FunkyCars} \mapsto (ad_1^*, \text{sec}, ad_2^*) \]

in which the same label occurs with two different types and by allowing all regular expressions we reach the full regular languages
In summary

Tree automata

- Form a general framework for schema languages
- Provide an execution environment for linear time validation
- Also serve as a basis for restricted classes with better algorithmic properties w.r.t. static analysis
1. Schemas and Validation

2. Querying

3. Transformation
XPath expressions select sets of nodes of XML documents by specifying navigational patterns

Example document

```xml
<Scientist>
    <Name>Alan Turing</Name>
    <Bio>
        <Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
        <Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
    </Bio>
    <Article>
        <Title> Computability and lambda-Definability </Title>
        <Journal> J. Of Symbolic Logic </Journal>
        <Year> 1937 </Year>
        ...
    </Article>
    ...
</Scientist>
```

Example query

```
//Bio/Died/*
```
XPath expressions select sets of nodes of XML documents by specifying navigational patterns

Example document

```
<Scientist>
    <Name>Alan Turing</Name>
    <Bio>
        <Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
        <Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
    </Bio>
    <Article>
        <Title> Computability and lambda-Definability </Title>
        <Journal> J. Of Symbolic Logic </Journal>
        <Year> 1937 </Year>
        ...
    </Article>
    ...
</Scientist>
```

Example query

```
//Bio/Died/*
```
Node-Selecting Queries

Observation: Such queries can also be expressed by MSO formulas with one free variable.

Example document

```xml
<Scientist>
  <Name>Alan Turing</Name>
  <Bio>
    <Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
    <Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
  </Bio>
  <Article>
    <Title> Computability and lambda-Definability </Title>
    <Journal> J. Of Symbolic Logic </Journal>
    <Year> 1937 </Year>
    ...
  </Article>
  ...
</Scientist>
```

Example query

\[\phi(x) := \exists y \ E(y, x) \land L_{\text{Died}}(y) \]
A (node-selecting) query is a function $q : \text{tree} \rightarrow \text{nodes}$

A query is MSO-definable if there exists a MSO formula $\phi(x)$ such that $n \in q(t)$ iff $t \models \phi(n)$, for all trees t and all nodes n.

Theorem

Every XPath query is MSO-definable

But XPath cannot express every MSO-definable query

In fact

Every XPath query is FO-definable when FO is endowed with the descendant and sibling relations (as opposed to parent and brother)

But XPath cannot express every FO-definable query [Marx, 2004]
Node-Selecting Queries

Terminology

- A **(node-selecting) query** is a function $q : \text{tree} \rightarrow \text{nodes}$
- A query is **MSO-definable** if there exists a MSO formula $\phi(x)$ such that $n \in q(t)$ iff $t \models \phi(n)$, for all trees t and all nodes n

Theorem

- Every XPath query is MSO-definable
- But XPath cannot express every MSO-definable query

[Marx, 2004]
Node-Selecting Queries

Terminology
- A *(node-selecting)* query is a function \(q: \text{tree} \rightarrow \text{nodes} \)
- A query is **MSO-definable** if there exists a MSO formula \(\phi(x) \) such that \(n \in q(t) \) iff \(t \models \phi(n) \), for all trees \(t \) and all nodes \(n \)

Theorem
- Every XPath query is MSO-definable
- But XPath cannot express every MSO-definable query

In fact
- Every XPath query is **FO-definable** when FO is endowed with the descendant and sibling relations (as opposed to parent and brother)
- But XPath cannot express every **FO-definable** query [Marx, 2004]
In conclusion

- MSO provides a general framework for node-selecting queries
- although practical languages are often less expressive
Question: What is the corresponding automaton model?

Motivation for this question:
- A formula $\phi(x)$ gives a declarative specification for a query
- An automaton gives an algorithm for computing the query
Question: What is the corresponding automaton model?

Let’s try this:

A query automaton Q consists of a non-deterministic bottom-up automaton A plus a select function

$$s : \text{States}(A) \times \text{Alphabet}(A) \rightarrow \{0, 1\}$$

Node n is in the result for tree t if there is an accepting computation on t in which n gets a state q such that $s(q, a) = 1$, where a is the label of n.

Automaton Model?
Example query automaton \((A, s)\)

- States\((A)\) = \(\{q_0, q_a, q_b\}\)
- Final\((A)\) = \(\{q_0\}\)
- States\((A)^* \xrightarrow{a} q_a\)
- States\((A)^* \xrightarrow{\sigma} q_b\)
- \((\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0\)
- \(s(q_b, b) = 1\)
- all others: 0

Select all \(b\)-labeled nodes for which there is an ancestor with an \(a\)-labeled child
Example of a Query Automaton

Select all \(b \)-labeled nodes for which there is an ancestor with an \(a \)-labeled child

Example query automaton \((A, s)\)

- \(\text{States}(A) = \{q_0, q_a, q_b\} \)
- \(\text{Final}(A) = \{q_0\} \)
- \(\text{States}(A)^* \xrightarrow{a} q_a \)
- \(\text{States}(A)^* \xrightarrow{\sigma} q_b \)
- \((\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0 \)
- \(s(q_b, b) = 1 \)
- all others: 0

Example tree - run 1

```
     e
   /   \
  c     \
 /       \
a c      e
   /     /  \
  b c   b e
```

Example of a Query Automaton

Select all \(b \)-labeled nodes for which there is an ancestor with an \(a \)-labeled child

Example query automaton \((A, s)\)

- \(\text{States}(A) = \{q_0, q_a, q_b\} \)
- \(\text{Final}(A) = \{q_0\} \)
- \(\text{States}(A)^* \xrightarrow{a} q_a \)
- \(\text{States}(A)^* \xrightarrow{\sigma} q_b \)
- \((\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0 \)
- \(s(q_b, b) = 1 \)
- all others: 0

Example tree - run 1
Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^*) \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0

Example tree - run 1

```
  e
 / \
/   \
\a q_a / \c q_b
/   /\   /
\b q_b /\c 0
/   /\   /
\0 /\   /
   /\   /
/\   /
\0 0 b q_0
```
Example of a Query Automaton

Select all \(b \)-labeled nodes for which there is an ancestor with an \(a \)-labeled child

Example query automaton \((A, s)\)

- States\((A) = \{q_0, q_a, q_b\}\)
- Final\((A) = \{q_0\}\)
- States\((A)^* \xrightarrow{a} q_a\)
- States\((A)^* \xrightarrow{\sigma} q_b\)
- \((\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0\)
- \(s(q_b, b) = 1\)
- all others: \(0\)

Example tree - run 1

```
          e q_0
c        /  
  a q_a /    
 q_b c q_0 
      \  
    b q_b c q_0 
       \  
     e q_0 b q_0
```
Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- States(A) = \{q_0, q_a, q_b\}
- Final(A) = \{q_0\}
- States(A) $\cdot a \rightarrow q_a$
- States(A) $\cdot \sigma \rightarrow q_b$
- $(\epsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \cdot \sigma \rightarrow q_0$
- $s(q_b, b) = 1$
- all others: 0

Example tree - run 1
Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\epsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0

Example tree - run 2
Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\epsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0

Example tree - run 2
Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0
Select all b-labeled nodes for which there is an ancestor with an a-labeled child.

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^*) \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0
Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0

Example tree - run 2

```
  e q_0
       /   \
  a q_a  c q_b
       /   \
 b q_b  c q_0
       /   \
 b q_b  c q_b
```
Example of a Query Automaton

Select all b-labeled nodes for which there is an ancestor with an a-labeled child

Example query automaton (A, s)

- States(A) = \{q$_0$, q$_a$, q$_b$\}
- Final(A) = \{q$_0$\}
- States(A)* \xrightarrow{a} q$_a$
- States(A)* $\xrightarrow{\sigma}$ q$_b$
- $(\varepsilon + q$_0$* + States($A$)*q$_a$States($A$)* $\xrightarrow{\sigma}$ q$_0$
- $s(q$_b$, b) = 1
- all others: 0

Example tree - run 2

not accepting!
Automaton Model?

Recall: If \(\text{States}(A) = \{q_1, \ldots, q_n\} \) then every run of \(A \) on a tree \(t \) can be represented by sets of nodes \(Q_1, \ldots, Q_n \)

Theorem

Every query expressible by a query automaton \((A, s)\) is MSO-definable.

\[
\begin{align*}
\text{EVEN} & := \{1, 2, 4, 6, 7, \ldots\} \\
\text{ODD} & := \{3, 5\}
\end{align*}
\]
Automaton Model?

Theorem

Every query q expressible by a query automaton (A, s) is MSO-definable.

Also recall: We can guess such a run in MSO:

$$\exists Q_1 \ldots \exists Q_n \text{validrun}(Q_1, \ldots, Q_n)$$
Hence: q is equivalently expressed by

$$\phi(x) := \exists Q_1 \ldots \exists Q_n \text{validrun}(Q_1, \ldots, Q_n) \land \bigvee_{\substack{q_i \in \text{States}(A) \\ a \in \text{Alphabet}(A) \\ s(q_i, a) = 1}} (Q_i(x) \land L_a(x))$$
Theorem

Every MSO-definable query $\phi(x)$ is expressible by a query automaton.
Theorem

Every MSO-definable query $\phi(x)$ is expressible by a query automaton.

Recall: $\phi(x)$ is equivalently expressed as a formula $\psi(X)$ such that

$$t \models \phi(n) \iff t \models \psi(\{n\})$$

where

$$\psi := X \subseteq Y \mid \text{Sing}(X) \mid E(X, Y) \mid X < Y \mid X \subseteq L_a \mid \cdots \mid X \subseteq L_b \mid \psi \wedge \psi \mid \neg \psi \mid \exists X \phi$$
Automaton Model?

Theorem

Every MSO-definable query \(\phi(x) \) is expressible by a query automaton.

Also recall: We can view a formula \(\psi(X) \) as defining a tree language over the extended alphabet \(\Sigma \times \{0,1\}^n \). This language is recognizable by a tree automaton \(A \).

\[
\phi \text{ selects node } 5 \\
t \models \phi(5) \iff t \models \psi(\{5\})
\]

\[
A \text{ accepts tree } t[\{5\}] \text{ over } \Sigma \times \{0,1\}^2
\]
Theorem
Every MSO-definable query $\phi(x)$ is expressible by a query automaton.

Hence: $\phi(x)$ is equivalently expressed by the query automaton (A', s) where

- A' is the automaton we obtain from A by replacing every rule
 $$ (q_1, \ldots, q_k) \xrightarrow{(a,b)} q $$
 by
 $$ (q_1, \ldots, q_k) \xrightarrow{a} q $$

- s is the function such that $s(a, q) = 1$ if and only if there is a rule in A of the form
 $$ (q_1, \ldots, q_k) \xrightarrow{(a,1)} q $$
The bad, the ugly, and the good:

- Unfortunately, the translation from formula $\phi(x)$ to automaton can be prohibitively expensive. The number of states is proportional to

$$2^{2^{\text{size} (\psi)}} \cdot \text{size}(\psi) \times \text{size}(\psi)$$

- Actually, unless $P = NP$ there is no elementary f such that MSO-formulas can be evaluated in time $f(\text{size}(\phi)) \times p(\text{size}(t))$ with p polynomial [Frick, Grohe 2002]

- This makes MSO useless as a query language. However Monadic Datalog [Gottlob, Koch 2002] can also express all MSO-definable queries and can be evaluated efficiently
Question: does it matter that A is non-deterministic in a query automaton (A, s)?
Some questions about query automata

Question: does it matter that A is non-deterministic in a query automaton (A, s)?

Example query automaton (A, s)

- $\text{States}(A) = \{q_0, q_a, q_b\}$
- $\text{Final}(A) = \{q_0\}$
- $\text{States}(A)^* \xrightarrow{a} q_a$
- $\text{States}(A)^* \xrightarrow{\sigma} q_b$
- $(\varepsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0

Example tree - run 2

```
          e
         /|
        q0  c
       /    |
      a  q_a  c q_b
     /    |
    q_b  c q_0
```

not accepting!

```
          e
         /|
        q_b  c
       /    |
      e q_0  b q_b
```

```
Some questions about query automata

**Question:** does it matter that $A$ is non-deterministic in a query automaton $(A, s)$?

**Example query automaton $(A, s)$**
- States($A$) = $\{q_0, q_a, q_b\}$
- Final($A$) = $\{q_0\}$
- States($A$)* $\xrightarrow{a}$ $q_a$
- States($A$)* $\xrightarrow{\sigma}$ $q_b$
- $(\epsilon + q_0^* + \text{States}(A)^* q_a \text{States}(A)^* \xrightarrow{\sigma} q_0$
- $s(q_b, b) = 1$
- all others: 0

**Example tree - run 2**

**Quiz:**
Can we select all $b$-labeled nodes for which there is an ancestor with an $a$-labeled child when $A$ is deterministic?
Some questions about query automata

The bad, the ugly, and the good

It matters that $A$ is non-deterministic in a query automaton $(A, s)$!

- Non-deterministic query automata cannot be implemented efficiently (need to check all possible runs)
- This renders them essentially useless as an model for specifying query algorithms
- But query automata can equivalently be defined as a triple $(A_1, A_2, s)$ were $A_1$ is deterministic bottom-up, $A_2$ is deterministic top-down over $\text{States}(A_2)$, and $s$ is a selection function

\[ s : \text{States}(A_1) \times \text{States}(A_2) \times \text{Alphabet}(A_1) \rightarrow \{0, 1\} \]

See [Schwentick, Neven 2002]
Two possible semantics

- **Existential semantics**
  a node is in the result if there is an accepting run that selects it

- **Universal semantics**
  a node is in the result if *every* accepting run selects it.

Quiz:

Does it matter which semantics we take?
Two possible semantics

- **Existential semantics**
  a node is in the result if there is an accepting run that selects it

- **Universal semantics**
  a node is in the result if *every* accepting run selects it.

---

**Quiz:**

Does it matter which semantics we take?

**No:** Universal semantics can be stated in MSO:

\[
\phi(x) := \forall Q_1 \ldots \forall Q_n \text{validrun}(Q_1, \ldots, Q_n) \rightarrow \bigvee_{q_i \in \text{States}(A)} (Q_i(x) \land L_a(x)) \]

\[a \in \text{Alphabet}(A) \]

\[s(q_i, a) = 1\]

and hence translated back into a query automaton with existential semantics.
Two possible semantics

- **Existential semantics**
  a node is in the result if there is an accepting run that selects it

- **Universal semantics**
  a node is in the result if *every* accepting run selects it.

Quiz:

Does it matter which semantics we take?

No: Existential semantics can be transformed into a universal semantics by adapting $A$ and $s$. **Exercise**
1. Schemas and Validation
2. Querying
3. Transformation
XSLT transforms documents by means of templates

Example input document

```xml
<Scientist>
 <Name>Alan Turing</Name>
 <Bio>
 <Born> <When> June 23, 1912 </When> <Where> London </Where> </Born>
 <Died> <When> June 7, 1954 </When> <Where> Wilmslow </Where> </Died>
 </Bio>
 <Article>
 <Title> Computability and lambda-Definability </Title>
 <Journal> J. Of Symbolic Logic </Journal>
 <Year> 1937 </Year>
 ...
 </Article>
</Scientist>
```

Example XSLT Program

```xml
<xsl:template match="*">
 <Person>
 <xsl:copy-of select="Name"/>
 <xsl:copy-of select="Bio/Born"/>
 <xsl:copy-of select="Bio/Died"/>
 </Person>
</xsl:template>
```
XSLT transforms documents by means of templates

Example output

<Person>
  <Name>Alan Turing</Name>
  <Born><When>June 23, 1912</When><Where>London</Where></Born>
  <Died><When>June 7, 1954</When><Where>Wilmslow</Where></Died>
</Person>

Example XSLT Program

<xsl:template match="*">
  <Person>
    <xsl:copy-of select="Name"/>
    <xsl:copy-of select="Bio/Born"/>
    <xsl:copy-of select="Bio/Died"/>
  </Person>
</xsl:template>
The typechecking problem:

Given an XSLT program $P$, an XML Schema $S$ and an XML Schema $T$, check that $P(t) \in T$ for every $t \in S$.

Motivation for this problem:

Microshaft has documents in $S$-form

$P(t)$

Macrosoft wants those documents in $T$-form
Theorem

The typechecking problem (without data values) is decidable!

Proof idea:

- It is possible to compute the inverse image of $T$ under $P$:

$$P^{-1}(T) = \{ \text{tree } t \mid P(t) \in T \}$$

- Moreover, this inverse image is regular

- Hence, it suffices to check that $S \subseteq P^{-1}(T)$ (why?)

Of course: the complexity of the problem varies widely if one takes e.g. restricted fragments of XSTL or DTDs instead of XML schemas, . . .
Acknowledgement

The slides of this lecture are based on the PODS 2004 tutorial of Thomas Schwentick

http://ls1-www.cs.uni-dortmund.de/~tick/homepage.html